手机浏览器扫描二维码访问
一秒记住【xiaoyanwenxue.com】精彩无弹窗免费!“数学大帝(.shg.tw)”!
早在1966年,数学家莫泽(Leo.Moser)就提出了这个移动沙发问题。
在单位宽度的走廊中,可围绕直角移动的最大面积的平面形状是什么?
适应转角的最大沙发也被称为“沙发常数”,其数值等于沙发最大的横截面积
通俗点说,谁能用最大的沙发完美通过90°的急弯,谁就是数学界的“秋名山车神”。
在这场漂移过弯的比赛中,每个数学家都纷纷施展浑身解数,暗下决心要将沙发秀起来。
就在问题被提出的同年,有人马上想到了正方形过弯法。
正方形沙发过弯
【沙发系数=1X1=1】
这个不用转动车头的硬核过弯操作,甚至让我们一下子就联想到推箱子游戏,简单粗暴的同时带有一点愣头青的味道。
虽然这个辣眼睛的操作,并不能得到数学家们的一致认可,但却打响了沙发问题的第一炮。
没过多久,数学家们对正方形沙发重新进行构想,采用了半圆的设计理念。
这个设计的神奇之处在于,过弯时,圆心会固定在转角的顶点处,圆弧会紧贴走廊边。
这次,数学家们终于成功让沙发头转起来了!
而更让他们感到兴奋的是,半圆形的改装使得沙发常数大大提高,一下子跃升到1.57。【沙发系数=(π×12)2≈1.57】
虽然半圆沙发取得了阶段性的突破,但是问题也非常突出:看起来不太像沙发,反而有点像量角器。
他把上面的半圆形沙发整体拉长,然后再在中间根据顶点处所需要的空间抠掉一部分,设计出一个很像沙发的沙发。
Hammersley沙发,定义了更高标准的过弯。
毫不夸张的说,这是沙发问题的里程碑。
中间的挖掉的半圆半径其实可以在0到1中间任意取值,这些沙发都可以穿过L形的走廊。通过对一个二次函数取极值,我们就能求出最终沙发中间部分的半径应当取为2π,那么这时沙发的沙发常数就变成了
在很长的的一段时间里,数学界的大部分人,包括Hammersley在内,都认为Hammersley沙发是完美的,是沙发问题的最终解。
但同样作为沙发问题的高玩的Gerver并不这么认为,他向Hammersley提出了质疑。
Hammersley不以为然,始终认为Hammersley沙发是最完美的。
直到1992年,Gerver在Hammersley沙发的基础上,通过旋转路径构建新的形状,提出了Gerver沙发。
尽管看起来和Hammersley沙发没什么区别,但从数学角度看,你会发现Gerver沙发更加复杂。
看看下面的图,刻度线描绘了边界上不同部分之间的过渡点——3条直线、15条曲线段。
其中V,XIII和XVIII三段是线段,
I,VI,XII,和XVII是圆弧,
II,III,VII,XI,XV和XVI是圆的渐开线,
IV和XIV是圆的渐开线的渐开线。
每条曲线段由一个单独的解析表达式描述。
这个神似老式电话听筒的Gerver沙发,硬生生把沙发常数整整往上提升了足足0.5%【沙发系数≈2.2195】,是目前单个走廊转角沙发移动问题中寻找到的最优解。
Gerver沙发是否就是最优的沙发曲线,他不得而知,但他表示最完美的沙发系数应该是在2.2195~2.37之间。
对于Gerver沙发的现世,数学家们纷纷拍手称好,除了加州大学戴维斯分校数学系教授DanRomik。
据说DanRomik刚拿驾照没多久,但却对沙发过弯问题有着极高的要求。
他并不满足于使用Gerver沙发漂移单个急弯,他认为能完美漂移过二连发急弯的男人才是真正的数学车神。
为了可以0距离感受沙发,他甚至模仿葛优躺在沙发上思考如何优化。
躺在沙发上的Romik,一下子就想起了类似比基尼的形状。
凤神临世 荒坟夜啼 恐怖复苏:开局激活酆都大帝模板 商界大佬想追我 [主咒回]社恐的我无所不能 绝品保镖美总裁 陆鸣血脉重生 楚扬苏芷洛小说 豪门绝宠之峥少溺爱狂妻 一品夫人:农家医女 我的重返2008 全能金手指 限时婚约:前夫请签字 女神临世素手倾天 女领导的兵王司机 暮色倾尽好晨光 我的火影忍者果然有问题 爹地,大佬妈咪掉马了 贴身侍卫 德赫瑞姆的领主
平凡的少年,儒弱的心灵,在意外获得一张游戏光盘后发生了奇妙的转变,他不再是那个任人欺辱的弱者,他不再是那个默默无闻的学生,他获得了超凡的实力,他拥有了强劲的武装,但这都不是他成功的关键,关键是他有了一颗无畏的心!...
穿越被下药,撞见一绝色美男坐在火里自焚帅哥,反正你也不想活了,先让我救急一下!某女扑倒在火中渡劫的邪帝,睡后溜之大吉。傲娇帝尊醒来,咬牙切齿把那个女人找出来,本座要亲手弄死!君时月正沉迷宅斗手撕渣男贱女不亦乐乎,邪帝满身杀气找上门,她以为自己死定了,谁知月儿想要什么,本座给你!月儿想吃什么,本座喂你!月儿想练什么功法,本座陪你双修!轩辕大陆众人一脸黑线帝尊,这就是您老所说的亲手弄死吗...
作者贾傲少寒的经典小说混沌丹帝最新章节全文阅读服务本站更新及时无弹窗广告小说谁说炼丹需要炉鼎?我苏悯生,只需轻动意念,便可炼天下百丹,无出其右!听闻神明可统一天地,那我苏悯生,岂不是轻吐口雾,便可荡平世间险恶?鸿蒙宇宙万物归一,久不分离。刚不巧,我苏悯生,控混沌,掌天道。踩世间万才,灭诸天神魔,征鸿蒙世界万万千!...
左手霜之哀伤,右手碧蓝怒火暗黑我和僵尸有个约会死神圣斗士西游记封神看叶离在无限世界中轮回,成就无敌的星空守护者...
本书讲述,一位高级机甲设计师,重生到45年前,原本想当一次小人物,轻轻松松的找几个漂亮的老婆过完一生.可是现实不允许他这样,星际战争即将爆发,为了保护自己身边的朋友,只能高举拯救世界的大旗...
武林帝国由作者骁骑校创作全本作品该小说情节跌宕起伏扣人心弦是一本难得的情节与文笔俱佳的好书919言情小说免费提供武林帝国全文无弹窗的纯文字在线阅读。...